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Abstract. I assess the issue of retrieving images of interest from a large
unclassified database. I address the topic of retrieval using queries consisting
of multiple positive and negatively classified images. A method for assessing
the similarity of images provided by the user to those in the database is sought.
I attack the problem by assuming that each image can be represented by a low
dimensional feature vector that preserves similarity comparisons. I propose
we can find images similar to the positive query images using a k-Nearest
Neighbor classifier about each positive image. A suitable distance metric is
needed for the classifier: I propose to use a weighted Euclidean distance metric.
The weights of the metric are to be determined iteratively by minimizing the
misclassification error of the aforementioned classifier.

Introduction

The graphic artist, the web designer and the advertiser are constantly looking for
fresh ideas, new media. With hundreds of millions of images on the Internet, and
more appearing every day, the Internet provides this constant source of inspiration.
How does one find visual content in this zoo of information? Commonplace are text
search engines for finding documents, some engines even providing image search by
text query. Text based search of images is limited to descriptions provided by the
website host, which are often not to be found. This motivates search techniques
based on the images themselves. One such paradigm is search by pictorial example.

I propose query by example is an excellent retrieval mechanism for finding images
on the Internet. Some proposed such systems are based on query by single image.
These systems are severely limited however. It is often difficult for the user to find a
single image representative of the goal image they desire. More often they can find
multiple images, each containing some feature that is present in the goal image.
As well, it is often difficult for the user to obtain query images on their own. I
will provide all such images in my algorithm. This leads us to query by multiple
example [4].

I present the user with images from my database. I then let the user decide which
are positive examples of the goal image they desire. But then how do we use these
newly classified images to search for other similar images? Ideally we would want
to generalize the properties of the query images. We could then find images in the
database that fit these properties. We would be introducing a segmentation of the
database into two sets. Lets denote the set of images that satisfy the aforementioned
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properties as positive images and all others as negative images. Any procedure
which performs such a segmentation is called a Classifier. We could then return
the newly classified positive images to the user.

How can we classify our database using the query images? Theoretically the
best way to do this is to use a Bayesian classifier. This is a special ideal classifier
which unattainable in practice but is instead used to benchmark practical classifiers.
There are, however, classifiers which closely approximate the Bayesian classifier. It
is well proven that the error of the k-Nearest-Neighbor classifier pNN is no more
than twice the error of the ideal Bayesian classifier pB [2]:

pB ≤ pNN ≤ 2pB

The error bound, and the simplicity of implementation, led me to use the k-Nearest
Neighbor classifier in my search algorithm. I will now explain the user feedback
domain in which we can use the above techniques.

1. Image Query by Positive and Negative Example

The domain of query by image using multiple examples not only allows a more
descriptive query than that using a single image but also allows for user feedback. In
my system the user is initially presented with N random images from the database.
The user chooses those images which are representative of the goal image they
seek. The images the user chooses are considered positive examples and those the
user does not choose are considered negative examples. Negative and Positive are
denoted as the Class Labels of the images. Note we will only be actually working
with feature vectors of the images, and not the actual images themselves. For the
rest of this paper I will use the terms image and the feature vector of that image
interchangeably (unless otherwise noted). Let the set of positive image examples
be denoted as Cp, the set of negative image examples be denoted as Cn, and the
sum of all images seen and classified by the user as:

Cp + Cn = C.

I will denote the entire image database as I and the set of all images seen but not
yet classified by the user:

U = I − C.

I now want to use the set of user classified images C to help classify the unclas-
sified images U from the large database. Using a classifier which I will discuss later
I can partition U into positive and negative images. I could then return to the user
a new set of images Uk which representing the k images most similar to the user
specified positive images Cp. The user would then classify the new images Uk as
they did before. Lets denote the classification of Uk as Ukp for positive and Ukn for
negative examples. Now we have a new set of classified images C, namely

(Ukp + Cp) + (Ukn + Cn) = C.

As well we have a new set of unclassified images

U = U − C.

We can now refine our estimated classification of I, and return to the user another
set of images Uk. The process continues, with the user seeing more and more images,
our algorithm continuously refining its search, until the user has found his/her goal
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image(s). But how do we classify the unclassified images using a small example set
of classified images?

2. k-Nearest Neighbor Classifier

A basic k-Nearest Neighbor classifier is straightforward in concept. Let C be a
set of classified feature vectors, and U be a set of unclassified feature vectors. Then
the class label of each vector Ui can be said to be equal to the majority class label
of the k vectors in C closest to Ui. As stated above, the error in this approximation
is no more than twice the error of an ideal classifier on the data given an infinite
data set. This assumes we have a way to measure closeness of feature vectors. The
most common distance measurement (denoted metric) is the Euclidean distance.
This gives a good approximation to the closeness of features, but would not allow
us to use multiple image queries.

We obtain valuable information by using multiple image queries as compared to
single image queries. Namely, we obtain a set of images each of whom has some
feature that is present in user’s yet to obtained goal image G. Ideally we want
a strategy for obtaining G from our set of classified images C. I could propose
a simple strategy by returning the k-Nearest Neighbors to each of the classified
images C:

(2.0.1) min
k

(dist(cpi, ui)), ∀i, j, cpi, uj ∈ Cp, U

The equation above returns (for each positive classified image cp) the k images most
similar. There is a fatal flaw with this approach however. For a given image cpi we
are finding images that are similar to ALL of its features. The user does not want
this but in fact wants images that are similar to the group Cp as a whole.

We could pose the problem as one of minimization as follows:

(2.0.2) min(ε =
|Cp|∑

i=1

dist(G, cpi))

In fact with an ideal distance metric (dist) all points cp would converge onto a single
point G. We could then find the k-Nearest Neighbors to G. This would represent
the k images most similar to ALL of the users query images. We would then be
done. But how do we find such a distance metric? I propose to use a Euclidean
distance measurement with learned weights.

3. Weighted Euclidean Distance

The Euclidean distance d, between two n-dimensional vectors u and v is defined
by:

d =
√

(u1 − v1)2 + (u2 − v2)2 + . . . + (un − vn)2

and in vector notation as:
d = ‖u− v‖

Now I can denote the weighted Euclidean distance as:

(3.0.3) d = ‖u ·W − v ·W‖
where W is a diagonal weight matrix. Now I can learn the weights W using a text
categorization algorithm WAKNN proposed by Han, Karypis, and Kumar [3].
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The (adapted) algorithm is as follows:
(1) Initialize weight matrix to all ones.

W =< 1, 1, . . . , 1 >

(2) For each image ci ∈ C and denoting the class label (positive or negative) of
ci as ζ(ci) calculate using k-Nearest Neighbors whether it is correctly classi-
fied. We will say some ci is correctly classified if the majority ci’s k-Nearest
Neighbors have the same class label ci. I will denote the misclassification
error for some ci as:

(3.0.4) εi =
{

0 if |{α|α ∈ ζ(ci) = ζ(kj)∀j 6= i}| ≥ (k/2)
1 Otherwise

Where kj ∈ K are the k-Nearest Neighbors calculated in equation 2.0.1
and using the weighted Euclidean distance from 3.0.3 with weight matrix
W from step 1.

(3) Now we will denote the TOTAL misclassification error ε for a given weight
matrix W as the sum of all misclassifications of ci obtained by:

(3.0.5) ε =
∑

i

εi

(4) Now we want to minimize the TOTAL number of misclassifications ob-
tained from 3.0.5. We do so by making small changes to W, one dimension
at a time. We then choose the update that minimized 3.0.5. The procedure
is illustrated in the pseudo code below:

for i = 1:|m| {
for j = 1:|W | {

W ′ = W
W ′

j = W ′
j ∗mj Try New Perturbation of W

Calculate εmj using 3.0.5 and W ′

}
}

where m is an array of update values namely [.2, .8, 1.5, 2.0, 4.0]. Now
W ′ corresponding to the minimum εmj is our new weight matrix W.

(5) Now we can keep repeating step 4 until we have a small enough ε and hence
a good weight matrix W

We now have a weight matrix W which minimizes the distance between every
positive image cpi and his closest positive neighbors. With any luck we have grouped
all the positive images together in the feature space. If they are close enough to each
other we can now easily minimize equation 2.0.2. In fact we can use an iterative
procedure similar to that above to solve 2.0.2. I will not explain the details of such
a procedure here.

We are now very close to a Content-Based Image Retrieval procedure. So far
we have a way to let the user specify query data. We have a way to use this data
to generalize about the goal image the user is imagining. Lastly we have a way to
generate similar images to the abstract image goal of the user. Of course we are
missing feature vectors. How do generate feature vectors which are representative of
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the image. How do we insure these feature vectors preserve similarity comparisons
from the user’s perspective?

4. Color Histogram

Color is a large determining factor in the perception of image similarity in hu-
mans. For simplicity I have chosen to only implement one feature vector, that
of Color. Comparison by color must be made in such a way that the perception
of color differences by humans corresponds to that of the computer. Fortunately
many computer image formats are designed to closely match the human perception
of color. JPEG images are stored using the Red, Green, and Blue components of
the image (RGB) which correspond to the three cones in human eyes. Typically
we can extract RGB color from an image using the following formula to scale out
image intensity [1]:

r = R/(R + G + B)
g = G/(R + G + B)
b = B/(R + G + B)

We can then calculate the average rgb values over regions in the image. Each region
average is denoted as one dimension in the feature vector. In my implementation
I evenly split the image into 4 rectangular quadrants. I then calculated the red,
green, and blue value average for each quadrant. I was then left with a 4 ∗ 3 = 12
dimensional feature vector for each image.

5. User Interface

My ultimate goal was to devise a CBIR algorithm for use on images obtained over
the internet. Such as there are search engines for text and documents there should
be for media. Consequently I chose to implement my algorithm entirely in the most
internet friendly language: Java [7], with a web interface using JavaServlets. The
implementation is available live at http://www.cs.mcgill.ca/˜aringl/cbir.html

The user interface is quite straightforward and modelled closely after other Query
by Multiple Image search engines [5]. The user is presented with N random images
from the database. The user then places a check mark next to those images which
are similar to the their goal image. These are denoted as the positive images. The
images they don’t choose are denoted as the negative images. The user then clicks
continue and the algorithms above are applied. The user is then presented with
N new images which are similar to the positive images they chose in the previous
iteration. The user can now select additional images which are similar to their
goal image. The process continues until the user has found the image they seek.
At any time the user can deselect positive images which they feel are no longer
representative of their goal image.

The user interface is written entirely in a JavaServlet [8] [6]. This is a server
side technology similar to CGI that allows presentation of dynamic content on the
web. For each user a session is maintained (usually in a cookie) that remembers
where the user is in a search. For modularity the Servlet is kept completely self
contained from the algorithm implementation. The Servlet communicates with the
search algorithm and image database through java’s RMI Registry.
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6. Implementation

The algorithm implementation provided search service to the Servlet frontend
by means of the Java RMI Registry. The Registry allows separate java processes to
communicate with each other. Most importantly the Registry allows a java program
to easily provide a service to other java programs.

Notice in my algorithm that in equation 2.0.1 (k-Nearest Neighbors) we have to
iterate through every image feature vector in the database. If this database were
on disk this would take a very very long time. Instead we want this database to
stay memory resident. To insure this we load the database into main memory, and
then register the program with the java RMI. The program will then wait forever
continuously providing services for whenever the Servlet requests such. We will
un-creatively call this service the back-end.

Upon the user’s first visit the Servlet request N random images from the back-
end. The Servlet then gives the user the images and waits. The user picks positive
images and the Servlet asks the back-end to generate the weight matrix for these
classified images. The back-end then exercises the algorithm from step (4). This
is done without any special data structures such as SS-Trees and so takes fairly
long. The Servlet then requests the k-Nearest Neighbors using the weight matrix
obtained. The back-end complies and returns the results. The user is presented
with the new images, and the process continues.

7. Results

The results were as expected for basic searches. In one such search I chose all
of the presented images that had a large amount of blue in them. I was returned
photos that had a large amount of blue. The same test worked for images with a
lot of green. It seems the algorithm performs well and as expected for the given
feature vector of Color Histogram.

The size of each region is entirely too large I found. Most of the images don’t
have large regions of the same color, and often the user wants to match some smaller
sections of color. I believe that lots of smaller regions would be more appropriate
for color matching. I store the entire spectrum of colors for each channel (RGB).
In the future this could be discretized to save space.

I believe it is too difficult for humans to estimate the average color over a region.
I believe some other color similarity measurement would provide better results. My
algorithm would also perform better using larger dimension feature vectors. The
larger the dimension of the feature vector, the more tunable the weight matrix W
is. Hence the more accurate the resultant vector G.

8. Conclusion

My main goal was to test the usefulness of a weighted k-Nearest Neighbor clas-
sifier in Image Search and Retrieval. I believe the experiment was a success. Using
a trivial feature vector I was able to quickly and accurately partition the image
database using my algorithm.

I am excited about this algorithm and would like to further test its usefulness
in Content-Based Image Retrieval. I believe a fast and simple algorithm such as
this could be implemented on a large scale for internet search of images. I am
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particularly interested in testing this algorithm on different image database and
with different feature vectors.
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